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Photoionization of Atoms and Ions:
Application of Time-Dependent Response

Method Within the Density Functional Theory

I. INTRODUCTION

Accurate calculation of photoionization and photoexcitation cross-

sections of atoms and ions are useful in a variety of investigations in

plasma physics and atomic physics. It is particularly useful in the

context of flashlamp photopumping schemes for x-ray lasers. Most of the

existing calculations of photoionization cross-sections were done using

Vthe single electron or the independent particle model (IPA). In this

model, the'energy-levels, and vavefunctions of the atom or ion are first

calculated using the Hartree-Fock (HF) method. The interaction of the

incident electromagnetic radiation with the atom (or ion) is treated via

the first order perturbation theory.

Comparison of experimental data with the IPA calculations shows that

for some simple systems such as a neutral few electron atom (Lithium, for

example), there is qualitative and sometimes quantitative agreement.

Hovever, for many electron atoms (Xenon, for example) and ions with a

large number of bound electrons, substantial discrepencies are found

betveen experimental and IPA-data.
1

In our work, we used the time-dependent linear response approximation

vithin the framework of the relativistic density functional method

(DF) 2'3' 4  to treat the problem of photoionization. This method

incorporates certain advantages over the HF-method. The HF-method is non-

local and computationally very elaborate, whereas in the density

functional method, one deals with a set of local equations only. This

leads to computational simplicity. On the other hand, it is veil known

from extensive application of the density functional method, that fairly

accurate atomic energy levels, vavefunctions etc. are obtained. The

computational simplicity is even more apparent in the case of relativistic

DF versus relativistic HF-methods. In the DFM, correlation effects of

Manuscript approved July 29. 1987..
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the bound electrons in the atom are accounted for in a simple way via the

correlation potential. The Hartree-Fock method, on the other hand, does

not take into account electron correlation, although it accounts for non-

local exchange effects appropriately.

The independent particle method does not take into account the

polarization effect of the atom brought about by the incident time-varying

radiation field. In the linear response method within the density

functional method, this is treated adequately - as will be seen from

comparison with the experimental data. In most experimental situations,

the incident radiation (from synchrotron sources or lasers) have field

strengths small compared to the atomic field strengths. For those

experimental conditions, the present model based on linear response is

adequate and useful.

Calculations of photoionization and photoexcitation cross-sections and

rates have a number of applications. For the photopumping scheme for x-

ray lasers, these processes play a crucial role in contributing to a

population inversion of excited ionic levels. As another example,

computation of opacities of plasmas for diagnostic and target response

effects require these data as input. In order to model the radiation

spectra from hot plasmas (via detailed configuration rate equation

technique, for example), the photoionization and photoexcitation data are

required in addition to other bound-bound, bound-free and free-free

processes. Acccurate calculations are also necessary for interpreting

experimentally available data on cross-sections. In view of these

different applications, there is a need for realistic modeling of these

processes in order to generate accurate data over a wide range of photon

energy for a variety of atoms and ions. The present model provides such a

tool and its usefulness will be discussed in subsequent sections.

2
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The above discussion deals vith the calculation of photoionization of

isolated atoms or ions - that is, vithout the effect of the plasma

environment. These effects are negligible for very lov density plasmas.

In many experimental situations, however, the plasma density can be quite

high (for example, in laser produced plasmas). In those cases, additional

effects due to screening shifts of energy levels and modification of

vavefunctions and potentials for the ion embedded in high density plasmas

have to be considered. In the later part of this report, ve vill present

some results of photoionization cross-section of ions in a dense plasma

medium and examine the modification of cross-sections due to the plasma

environment.

II. THE METHOD OF CALCULATION

The first part of the calculation is to generate the energy-level

spectrum and the vavefunctions of the particular atom or ion of specific

configuration. This is done by using the local density functional method.

In order to treat many-electron atoms (vith high *Z) appropriately,

relativistic DFH equations were used. In this method, the folloving set

of equation were solved self-consistently:]2
I L.p+c2 + u (r) I*i (r') - Ei *i ( )  ()

ur. W +" o r [ (r) Cc(o(r_))] (2)

and P (r) - z fi *f ( ) (3)
i

In the above, p(r) is the electronic charge density of the atom, az's

are the Dirac matrices, ft's are the integral occupation factors

corresponding to the number of electrons in each state *i(r) vith

corresponding energy eigenvalue Ei. The atomic potential u(r)

3



contains, in addition to the nuclear and the electrostatic Hartree

term, a contribution arising from the electron exchange and

correlation effects. Let us note that the use of integer occupation

factors fils for the given configuration distinguishes this model from

the "average atom model" vhere the occupation factors are taken to be

those given by the statistical Fermi distribution function.

The orbital functions are four-component spinors. They are

4split into major and minor components:

", J 1 sirr~i i (4)

vhere A and B are major and minor components of the radial functions and

9jlm and Ojl,a are tvo-component Pauli spinors vith the indicated numbers.

The various quantum numbers are related by

1' a 1 + S, J' a 1 + 1/2, S a 1' - 1/2 S, K - S (J + 1/2); S 1 ± 1 (5)

The differential equations for A and B (in matrix form) are:

d (A K/r (u -K9-c 2)/cs1  (6)di M ( -(u - 9 + c2,/cs K/r

In Eq. (2), cX is the exchange-correlation energy of the electrons.

In actual calculation, Gunnarsson-Lundquist (G-L) form 3 for exchange-

correlation energy and potential vas used. It is vell knovn that

reliable atomic data is obtained from the use of G-L exchange-

correlation. Equations (1) - (6) are solved numerically to self-

consistency to obtain the vavefunctions *is, the binding energies of

each orbital El' the atomic charge density p(r) and the self-

consistent potential u(r').

a%4



Nov consider the effect of an incident time-varying radiation

field E (t) E0eiwt on the atom. It induces a time-dependent atomic

density deviation, 6p(r,t), causing a time-dependent polarization

effect. For the linear response method used here, it is convenient to

work vith the Fourier transform:

Pr1 wo (7)O
(r t) " . _I Spo( 6))e -i  dw (7)

The net induced density due to the external plus the induced potential

is

Spin d ("*a)- X( ,',) [Vext( ,b) V rd c,) r, (8)

vhere the induced potential is given by

APOr 3 V (p r) (9)V (r,() = dr - ----------- 6p(r',a)

r -r -p(r)

The response function is given by

* 01 4 *44

X (for',w) -Efi*i(r) * i ( r*' ) G (-r,.r', Ei + w)

+ I fi *i( ) *i (r') G (r,r , - W)
~i

and thus involves the vavefunctions and energy levels of the atom.

The Green's functions are solutions of the inhomogeneous Dirac

equation

(cC .*' + c + u (r) - E) G (, ) - 6(r - r) (11)

In actual calculation, angular decomposition of the Green's function

in terms of spherical harmonics is done (Appendix I) and the radial

part is treated separately.



The frequency dependent polarizability z(w) is the ratio of the

induced dipole moment to the .xternal field:

x~i e_- f Z dp r'd (12)
0

Note that a(w) like Sp(rw) is complex. The induced density deviation

(ahd also the corresponding induced -potential) can have a phase

difference with respect to that of the applied external field. Once

a(w) is determined, the photoabsorption cross-section a(w) of the atom

is obtained from:

O(W) a 4- IM a (0). (13)c

III. PARTIAL CROSS-SECTION

In order to see the connection with the IPA-model, consider the

partial cross-section due to photoionization from a specific bound

state *i(r) to a final continuum state *f (r).

The initial atomic state is represented as

Unl (r)

*i(r) - r YL (r). (14)

and the final continuum state with wavevector 9 and energy c as

*f(r) - 4n E, Al,i 1' Pl(r) YL' (K) YLO(r) (15)

The complex coefficients A1 s are found by requiring * f(r) to behave

asymptotically as an incident plane wave plus a spherical wave. Then

the partial cross-section on, is shown to be

() - 2 (21 + 1) aK w f_7 a
2

(16)

x L#AI 2 <1 100 1 1'0>21 Pl,(r) vSC'(r,w) Unl (r) drl 2

seeI O OO f, , - ,,-.



where <1 1001 1'0> is a Clebsch-Gordon coefficient.

In (16), VSCF (r,w) is a frequency dependent complex self-

consistent potential. Note that, if VSCF (r,w) is replaced by the

usual dipole moment operator, one obtains the conventional or

independent particle approximation (IPA) result. In actual

calculations, both bound and continuum vavefunctions are generated

numerically using the Numerov method for integrating the Dirac

equation. Let us also note that the real and imaginary parts of the

self-consistent field contributes to the partial cross-section without

interference. Computations were performed for both the conventional

independent particle model and the time-dependent linear response to

density functional method for comparison purposes.

IV. RESULTS

In Fig. 1, results of computed photoionization cross-section for

neutral xenon is plotted as a function of photon energy near the 4d-

threshold. The drastic difference between the results obtained from

the time-dependent response method (curve A) and from conventional

IPA-model (curve B) is clear. The IPA-model does not reproduce the

experimental values5 at all whereas the present time-dependent model

agrees very well with the experimental data over this entire range of

photon energy from 5 to 10 Ryd., including the peak at about 7 Ryd.

In that energy range, the IPA cross-section shows a rapid decrease -

in contrast to the experimental data.

The primary physical reason for this difference in the two models

arise from the polarization effect of the atom subjected to the

incident radiation. In the case of xenon, all of the 54 bound

.5 7
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electrons forming the atom participate in the polarization process

(the outer ones contributing most). The external field is screened in

the energy range 5-6 Ryd. (and again in the range 8.5 - 9.5 Ryd.), and

is antiscreened in the intermediate 6-8 Ryd. range. The antiscreening

effect produces a stronger effective field for the 4d-electron to

photoionize, thereby enhancing the cross-sections somewhat in the

intermediate energy range as seen in Fig. 1.

The 3s-partial cross-section for Argon is shown in Fig. 2. The

experimental data 7 in the range of 30 - 65 eV are depicted by circles

with the error bars. The conventional IPA-calculation (curve A) again

does not show the experimentally seen variation at all. The present

time dependent response method reproduces the observed variation

including the experimental Cooper minimum at about 43 eV and is in

good agreement with the measured cross-sections. The occurrence of

the Cooper minimum is known 1 to be due to the vanishing of the matrix

element between bound and continuum states at that photon energy In

the present time-dependent polarization model, the physical reason for

the minimum is that the induced potential almost exactly cancels out

the external field, reducing the effective field to almost zero.

The total cross-section for Argon atom as a function of the

photon energy is.plotted in Fig. 3, and compared with experimental

data8 . Comparison is also made of results obtained from Hartree-Fock

(HF) length and velocity approximations by Kennedy and Manson6 . We

note that the time-dependent response model again best reproduces the

experimental data. The HF-velocity approximation gives, for example,

a cross-section twice as large at 40 eV whereas the HF-length result

is six times larger than the experimental data at the same photon

energy.

8



Good agreement with available experimental data for Ar, Ne, Kr

and Xe suggests that reliable cross-sections can also be generated for

higher-Z rare gas atoms such as Radon utilizing the time-dependent

response model. For Radon (Z-86), relativistic effects are

significant. The Dirac equation approach in our model is therefore

suitable. We performed self-consistent calculation for Radon and the

computed total cross-section is plotted in Fig. 4 for the photon

energy range 7-28 eV. The large difference between the results

obtained from IPA-model and the present time-dependent response model

is clearly seen from the graph. The large peaks due to the ionization

from 6P 2 4 d3 1 2  in the IPA-model are masked significantly due to

polarization effect incorporated in the time-dependent response model.

No experimental data is available for the case of Radon. However, in

view of the good agreement between experimental data and the results

of time-dependent response model, it is expected that future

experimental measurements for Radon in this photon energy range will

be in close agreement with these calculated cross-sections.

The 6s partial cross-section for Cesium as a function of photon

energy in the range of 4-8 eV is plotted in Fig. 5. In this

particular case, there are significant differences in the two sets of

experimental data 9 "10  of the two groups, presumably due to

uncertainties in vapor pressure measurement. Calculated value of

partial cross-sections from the time-dpendent model is in fair

agreement with one set of observed data (Fig. 5). The effect of spin-

orbit interaction is known to be significant for the 6s partial cross-

section of Cesium. A more detailed theory should incorporate this

effect. As seen from Fig. 5, the IPA-model shows a monotonic decrease

of cross-section in this energy range in complete disagreement with

the experimental data.

r ' , - - - . - - . . - . . , . . . . . . . . . , " 9.



Ions of specific configurations such as Neon-like Argon are of

interest for scaling to higher Z neonlike systems for x-ray laser

research. No experimental data is available for these ions and thus

the data have to be provided by theoretical calculations. The fact

that the time-dependent response method is successful for generating

accurate data for rare gas atoms suggests that reliable cross-sections

can be generated for Ne-like Ar and other ions of interest. Computed

results for Ne-like Argon are presented in Fig. 6 and compared with

conventional IPA-calculations. The differences are smaller in this

case, as expected, because the number of bound electrons for these

ions is only ten. For these highly charged ions, these electrons are

very tightly bound and thus do not participate as effectively in the

polarization process.

The results presented above are for single atoms or ions without

the effect of the plasma environment - as appropriate for very low

density plasmas. For high density plasmas, however, effects due to

screening shifts of energy levels, modification of wavefunctions of

bound (particularly the upper levels) and continuum wavefunctions as

well as potentials of the ion embedded in the plasma have to be

considered.

For proper treatment these effects, the self-consistent density
11

functional method (DFM) at finite temperatures should be used. The

application of this method requires iterative numerical solution of

Schrodlnger equation involving the complete set of bound and continuum

vavefunctions for the multielectron ion and construction of effective

potential inclusive of plasma screening and electronic exchange

correlation effect in each iteration. For our present purpose, we

adopted the following simplified approach for computational

simplicity. For a given plasma density and temperature, we represent

10
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the long range part of the effective potential in the Debye-screened

form. The inner part of the effective potential was constructed by

numerical itegration of the Hartree term with the electron density

distribution calculated using the bound state wavefunctions.

The results of our calculation for H-like and Li-like carbon ions

are shown in figures 7-11. From fig. 7, we see, by comparing with

isolated atom cross-sections, that the threshold for photoionization

from is-level of H-like C shifts substantially (from 18 eV to about

15.2 eV) for Debye length XD  a 2 a.u. This is significant in the

context of calculation of photoionization rates, which is calculated

by integrating the cross-section weighted by the electron distribution

function (usually the Maxvell-Boltzmann distribution) over the entire

energy range. The calculated rates in the two cases would therefore

be very different - as seen from fig. 7.

In fig. 8, the corresponding results of partial photoionization

crosS-section for H-like C is plotted. Fig. 9 shows the 3d-partial

cross-sections of the same ion at two different plasma conditions ( D

- 5 and 2 a.u.) and compared with the isolated atom cross-section

(curve A). The increasing shift of the ionization threshold with

decreasing ;D (i.e. with increasing density) clear from the figure 9.

We performed similar calculation for Li-like carbon as well (fig.

10-11). Since there are three bound electrons for these ions,

iterative calculations mentioned before was performed for the bound

states and the continuum wavefunction was computed with 1-electron

removed (by ionization) from the given state 2s or 3s. Comparison

11
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vith isolated ion results shovs substantial modification of

photoionization cross-section at these densities and temperatures and

significant shifts of ionization threshold due to effect of the

surrounding plasma.

V. CONCLUSIONS

It is demonstrated that the time-dependent linear response method

vithin the framevork of local relativistic density functional theory

can provide reliable atomic data for various atoms and ions of

experimental interest. This model is particularly useful in those

situations vhere conventional independent particle models fail to

provide accurate data. The mechanism of time-dependent polarization

of the atom is seen to be important in describing the observed

results. As a practical point, the computer code based on the time-

dependent model is fast and efficient, capable of generating a large

number of data in a short time (for example, cross-sections for 10

photon energies for a medium-Z atom takes about 3 minutes of c.p.u.

time on a Cray-XNP computer). The present method is capable of

treating large complex atoms vith high-Z for vhich relativistic

effects are important. Let us point out that if the applied radiation

field strength is very high, so that it is comparable or larger than

the atomic field strength, nev extensions or developments of the

present model is necessary to treat those conditions. Full numerical

solution of time-dependent density functional method (beyond the

linear response approximation) vould be one suitable to use in those

cases. Work in this new direction is planned for the future.

12



With reference to the calculations for the different plasma

conditions, let us point out that the Debye-screened form for the long

range part of the potential may not be adequate for the high-density

plasmas. For more realistic calculation, it is necessary to use fully

self-consistent finite temperature density functional method for those

plasma conditions. Also, the effect of exchange and correlation for

plasma electrons become important at high densities. The present

approximate scheme is used at present for computational simplicity.

However, the results shown here clearly indicate that with increasing

plasma density, the photoionization cross-section and rates of the

ions forming the plasma can be substantially modified. Accurate

modeling of atomic properties for dense plasmas, therefore, requires

that the effect of the surrounding plasma should be properly included

in the calculation.
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Appendix I

The Green's function G in eq. (11) has 16 components, vhich are

represented in matrix form

G(*, ',E) G11 (r, rI E) G (r,I E)
G~~r, r ,E-#2. 224 -0-#

G G(r,r'j B) G (r,r' E))

The angular decompositon of various terms are

G11  , IE) im Ql(r) G1i (r,r' -) 2ji (r')

12 -1 12

G12 ( E) - ' (r) Gl(r'r' IE) Q*m (r') (1-2)
21. '-i G21.

G21 (r,r' IE) jim 1 1 - l,m(r) Gl(r,r' IE) JlM (r')

22 IE) J m 2'l,.,( E) 22  *G (r;'r* irm (r) (r,r' iE) m (r')

The radial part GC (r,r' E) are solutions of the radial inhomogeneous

Dirac equation

v (r) uj (r') / (rr'Wjl) r < r(3,

GCO(rr'I E) I (1-3)
U (r) 1i 1 (r') / (rr'V) r > r'

Wjl is the Wronskian

V _ cSjI [l(r) i (r) - ujl(r) uJl(r)] - const.

-1 -2
Iii (r) and V;1 (r) are major and minor component radial functions that are

real and regular at r - o. u j1 (r) and 2 jl(r) major and minor cr-,onnent

14



radial functions which (for E > c 2  are complex and obey outgoing wave

boundary conditions at r a -. The phase for iand -62 11is chosen so

that V is real. When E < c 2  ~1 j1(r) and -2 1()are real and decay

exponentially at large radii.

With the above representations, the polarizability X(r,r' w) is given

by

X(r,r' o0) - E f (2J2+1) (211+1) (2 1291)

[(S111 2 B'() 2 2r e (r(r c~r

±i 2-1B i(r') T 2 r'j e± tw) /(rr') 2 , ] (1-4)

when r < r', r and r, are interchanged on the right side of eq. (1-4) when

r > r'. The index i stands for the quantum numbers (n, 11, j1, Sj) of a

bound state and f for the occupation factors. The summation is over all

indices except I and over both + w~ and w . For the case of - w, the

* complex conjugates of all outgoing waves in eq. (1-4) are to be used.

Angular momentum coupling coefficients are expressed in terms of Wigner 3j

and 6j symbols.

11
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